POZNAN UNIVERSITY OF TECHNOLOGY EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) ## **COURSE DESCRIPTION CARD - SYLLABUS** Course name Design of Production Systems [N1IZarz1>PSP] Course Field of study Year/Semester Engineering Management 4/7 Area of study (specialization) Profile of study general academic Level of study Course offered in first-cycle polish Form of study Requirements part-time elective Number of hours Lecture Laboratory classes Other (e.g. online) 0 0 Tutorials Projects/seminars 0 10 Number of credit points 3,00 Coordinators Lecturers dr inż. Ireneusz Gania ireneusz.gania@put.poznan.pl # **Prerequisites** The student starting this subject should have basic knowledge in the field of production and service management, should be able to apply the tools and techniques of designing production units of the first degree of complexity, should also be able to obtain information from the indicated sources and be willing to cooperate within a team. ## Course objective To provide students with basic theoretical and practical knowledge related to the design of production systems as well as basic methods and techniques used in this process. ## Course-related learning outcomes ## Knowledge: The student classifies and analyzes various types of organizational structures and applies methods of their design, in the context of creating effective production systems [P6S WG 06]. The student identifies the phases of the life cycle of socio-technical systems and their impact on the design of production systems [P6S WG 13]. The student analyzes and assesses typical industrial technologies, with particular emphasis on technologies for construction and operation of machinery [P6S_WG_17]. The student explains the basic principles of safety and hygiene at work, applying them to the industrial environment [P6S WG 18]. #### Skills The student conducts experiments, measurements, and computer simulations, analyzing results in the context of designing production systems [P6S UW 09]. The student applies analytical and experimental methods to design production systems, including simulations and modeling [P6S UW 10]. The student designs the structure and technology of simple parts and subassemblies of machinery, considering organizational and technical aspects of production [P6S UW 16]. ## Social competences: The student develops and implements design strategies, considering technical, economic, marketing, legal, organizational, and financial aspects [P6S KO 02]. The student analyzes and assesses the effects of engineering activities, including their impact on the environment, taking responsibility for the decisions made [P6S_KR_01]. ## Methods for verifying learning outcomes and assessment criteria Learning outcomes presented above are verified as follows: #### Formative assessment: - a) in the scope of projects based on the current progress of project task implementation - b) in terms of lectures based on answers to questions about the material discussed in previous lectures, half test. ## Summative rating: - a) in the scope of projects based on the presentation of the implementation of the project task and answers to questions regarding the implementation of the project task and solutions used in the project task - b) in the scope of lectures (1) written exam in the field of lecture content; each question is scored on a scale of 0 to 1; the exam is passed after obtaining at least 60% of the points; the student can take the exam after passing the project; (2) discussion of exam results # Programme content Basics of production system design. Enterprise as a system. Determining the design situation (modernization or design of new systems). Product implementation process. Algorithm for designing technical and economic assumptions for the preparation of product manufacture. Design issues: production system structures, production launch, spatial organization of production processes. Project documentation. General plan, location of the enterprise. System design assessment. New directions and trends in the design of production systems. # **Teaching methods** - Informative (conventional) lecture (information transfer in a systematic way) of a monographic nature, in the form of a multimedia presentation. - Project method (individual or team implementation of a large, multi-stage cognitive or practical task, the effect of which is the creation of a work). # **Bibliography** ### Basic: - 1. Brzeziński M. (red.), Organizacja i sterowanie produkcją, AW Placet, Warszawa, 2002. - 2. Lewandowski J., Skołud B., Plinta D., Organizacja systemów produkcyjnych, PWE, Warszawa 2014. - 3. Gawlik J., Plichta J., Świć A., Procesy produkcyjne, PWE, Warszawa 2013. - 4. Mazurczak J., Projektowanie struktur systemów produkcyjnych, WPP, Poznań, 2001. - 5. Automatyzacja i robotyzacja procesów produkcyjnych, Domińczuk J., Kost G. Łebkowski P.,Polskie Wydawnictwo Ekonomiczne, 2021. - 6. Technologie, procesy i systemy produkcyjne Rysiński J.,Więcek D., ; Akademia Techniczno-Humanistyczna w Bielsku-Białej. Wydział Budowy Maszyn i Informatyki, Wydawnictwo Naukowe Akademii Techniczno-Humanistycznej w Bielsku-Białej, 2021, - 7. Jackowicz R., Lis S, Podstawy projektowania struktur przedsiębiorstw przemysłowych, WPW, Warszawa 1987, - 8. Mazurczak, J., Gania, I., 2008. Kryteria klasyfikacji warunków organizowania systemów produkcyjnych,[red.] Fertsch Marek, Grzybowska Katarzyna, Stachowiak Agnieszka, Poznań, Politechnika Poznańska, Instytut Inżynierii Zarządzania, str. 175 186. - 9. Lis S., Organizacja i ekonomika procesów produkcyjnych w przemyśle maszynowym, PWN, Warszawa 1984. ### Additional: Pająk E., Klimkiewicz M., Kosieradzka A., Zarządzanie produkcją i usługami, PWE, Warszawa 2014. - 2. Muhlemann A., Oakland J., Lockyer K, Zarządzanie. Produkcja i usługi, PWN, Warszawa 2001. - 3. Pająk E., Zarządzania produkcją, Wydawnictwo Naukowe PWN, Warszawa 2017. ## Breakdown of average student's workload | | Hours | ECTS | |--|-------|------| | Total workload | 75 | 3,00 | | Classes requiring direct contact with the teacher | 20 | 1,00 | | Student's own work (literature studies, preparation for laboratory classes/tutorials, preparation for tests/exam, project preparation) | 55 | 2,00 |